RDOperator
The RDOperator
class is a symbolic representation of a quantum operator with an associated finite dimensional matrix and subspace. It extends the Operator
class and provides essential functionalities for symbolic computation and representation of quantum mechanical operators.
Parameters:
- name (
str
):- The unique identifier for the operator. This parameter can accept LaTeX encodings for symbolic printing.
- matrix (
Matrix
):- The matrix representation for the given operator.
- subspace (
str
, optional):- Indicates the subspace where the operator acts. If not provided, it defaults to 'default'.
Attributes
- name (
str
):- The unique identifier for the operator.
- matrix (
Matrix
):- The matrix representation for the given operator.
- subspace (
str
):- Indicates the Hilbert subspace on which the operator acts.
Usage Example
Below is a practical example that demonstrates how to create an RDOperator
instance and utilize its properties and methods.
from sympt import RDOperator
from sympy import Matrix, eye, sympify
# Define a simple 2x2 identity matrix
name = "Omega_0"
mat = Matrix([[1, 0], [0, 1]])
subspace = "Omega"
# Create the RDOperator instance
operator = RDOperator(name, mat, subspace)
# Accessing attributes
display(operator)
print("Operator Name:", operator.name)
print("Operator Matrix:\n", operator.matrix)
print("Operator Subspace:", operator.subspace)
\(\Omega_0\)
License
SymPT is licensed under the MIT License. See the LICENSE
file for details.
Citation
If you use SymPT in your research, please cite the following paper:
BibTeX Entry:
@misc{diotallevi2024symptcomprehensivetoolautomating,
title={SymPT: a comprehensive tool for automating effective Hamiltonian derivations},
author={Giovanni Francesco Diotallevi and Leander Reascos and Mónica Benito},
year={2024},
eprint={2412.10240},
archivePrefix={arXiv},
primaryClass={quant-ph},
url={https://arxiv.org/abs/2412.10240},
}
APA Citation:
Diotallevi, G. F., Reascos, L., & Benito, M. (2024). SymPT: a comprehensive tool for automating effective Hamiltonian derivations. arXiv preprint arXiv:2412.10240.
IEEE Citation:
G. F. Diotallevi, L. Reascos, and M. Benito, "SymPT: a comprehensive tool for automating effective Hamiltonian derivations," arXiv preprint arXiv:2412.10240, 2024.